Redis Semantic Cache
The Redis cache backend provides persistent, high-performance semantic caching using Redis Stack with RediSearch. This solution offers excellent performance with lower operational complexity compared to specialized vector databases.
Overview​
Redis cache is ideal for:
- Production environments requiring fast response times
- Single-instance or clustered Redis deployments
- Medium to large-scale applications with efficient memory usage
- Persistent storage with optional TTL expiration
- Simplified operations with familiar Redis tooling
Architecture​
Configuration​
Redis Backend Configuration​
Configure in config/semantic-cache/redis.yaml:
# config/semantic-cache/redis.yaml
connection:
address: "localhost:6379"
password: ""
db: 0
pool_size: 10
max_retries: 3
dial_timeout_ms: 5000
read_timeout_ms: 3000
write_timeout_ms: 3000
tls:
enabled: false
index:
name: "semantic_cache_idx"
prefix: "doc:"
vector_field:
name: "embedding"
dimension: 384 # Must match embedding model dimension
algorithm: "HNSW"
metric_type: "COSINE"
hnsw:
m: 16
ef_construction: 200
ef_runtime: 10
search:
top_k: 5
development:
drop_index_on_startup: false
log_level: "info"
Setup and Deployment​
Start Redis Stack:
# Using Docker
make start-redis
# Verify Redis is running
docker exec redis-semantic-cache redis-cli PING
2. Configure Semantic Router​
Basic Redis Configuration:
- Set
backend_type: "redis"inconfig/config.yaml - Set
backend_config_path: "config/semantic-cache/redis.yaml"inconfig/config.yaml
# config/config.yaml
semantic_cache:
enabled: true
backend_type: "redis"
backend_config_path: "config/semantic-cache/redis.yaml"
similarity_threshold: 0.8
ttl_seconds: 3600
Run Semantic Router:
# Start router
make run-router
Run EnvoyProxy:
# Start Envoy proxy
make run-envoy
4. Test Redis Cache​
# Send identical requests to see cache hits
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "MoM",
"messages": [{"role": "user", "content": "What is machine learning?"}]
}'
# Send similar request (should hit cache due to semantic similarity)
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "MoM",
"messages": [{"role": "user", "content": "Explain machine learning"}]
}'
Next Steps​
- Milvus Cache - Compare with Milvus vector database
- In-Memory Cache - Compare with in-memory caching
- Cache Overview - Learn semantic caching concepts
- Observability - Monitor Redis performance